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Abstract. Theoretical results for two neutrinos in the nuclei 96Ru, 102Pd, 106Cd and 108Cd are presented.
The study employs the Hartree-Fock-Bogoliubov model to obtain the wave functions of the parent and
daughter nuclei, in conjunction with the summation method to estimate the double-beta decay nuclear ma-
trix elements. The reliability of the intrinsic wave functions of 96,102Ru, 96Mo, 102,106,108Pd and 106,108Cd
nuclei is tested by comparing the theoretically calculated spectroscopic properties with the available ex-
perimental data. The calculated half-lives T 2ν

1/2 of 96Ru, 102Pd, 106Cd and 108Cd nuclei for 2ν β+β+, 2ν

β+EC and 2ν ECEC modes are presented. The effect of deformation on the nuclear transition matrix
element M2ν is also studied.

PACS. 23.40.Hc Relation with nuclear matrix elements and nuclear structure – 21.60.Jz Hartree-Fock
and random-phase approximations – 23.20.-g Electromagnetic transitions – 27.60.+j 90 ≤ A ≤ 149

1 Introduction

The two-neutrino double-beta (2ν ββ) decay and the
neutrinoless double-beta (0ν ββ) decay can occur in
four different processes: double-electron (β−β−) emission,
double-positron (β+β+) emission, electron-positron con-
version (β+EC) and double-electron capture (ECEC).
The later three processes are energetically competing and
we shall refer to them as positron double-beta decay
(e+DBD) modes. The 2ν β−β− decay is allowed in the
standard model of electroweak unification (SM) and the
half-life of this process has been already measured for
about ten nuclei out of 35 possible candidates. Hence,
the absolute values of the nuclear transition matrix el-
ements (NTMEs) M2ν can be extracted directly. Con-
sequently, the validity of different models employed for
nuclear-structure calculations can be tested by calculat-
ing the M2ν . In case of 2ν e+DBD modes, experimental
limits on half-lives have already been given for 14 out of
34 possible isotopes. The observation of 2ν e+DBD modes
would further constrain the nuclear models employed to
study the ββ decay severely.

On the other hand, the 0ν ββ decay violates the lepton
number conservation and is possible in gauge theoretical
models beyond the SM as GUTs, Majoron models, Rp vi-
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olating SUSY models, lepto quark exchange and compos-
iteness scenario. The aim of all the present experimental
activities is to observe the 0ν ββ decay. The observation of
0ν e+DBD modes would play a crucial role in discriminat-
ing finer issues like the dominance of Majorana neutrino
mass or right-handed currents. The experimental aspects
and theoretical implications of e+DBD modes have been
widely discussed over the past years [1–11].

The experimental study of β−β− decay is usually
preferable due to a larger available phase space in com-
parison to e+DBD modes. On the other hand, the e+DBD
modes are attractive from the experimental point of view
due to the fact that they can be easily separated from the
background contaminations and easily detected through
coincidence signals from four γ-rays, two γ-rays and one
γ-ray for β+β+, β+EC and ECEC modes, respectively.
In the case of the 2ν ECEC mode, the Q-value of 106Cd is
pretty large, 2.782MeV, but the detection of the 0+ → 0+

transition is difficult since only X-rays are emitted.

In 1955, Winter studied the e+DBD modes of 106Cd
experimentally to explore the possibility of distinguishing
between the Dirac or Majorana character of the electron
neutrino [12]. The 2ν e+DBD modes were studied the-
oretically for the first time by Rosen and Primakoff [1].
Following the discovery of parity violation in beta decay,
there was a marked decline in the experimental searches of
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ββ decay in general as both the lepton number conserva-
tion and the γ5 invariance had to be violated for the 0ν ββ
decay to occur. However, the perception began to change
after Vergados showed that e+DBD modes are possible as
lepton number violating process in gauge theories beyond
the SM [2]. Kim and Kubodera estimated the half-lives
of all the three modes with modified NTMEs and non-
relativistic phase space factors [13]. Abad et al. performed
similar calculations using relativistic Coulomb wave func-
tions [14]. Some other theoretical studies were also done
for the e+DBD modes [15–18]. The experimental activities
on the study of 2ν e+DBD modes were also resumed [19–
21]. In the meantime, the QRPA emerged as a successful
model in explaining the quenching of NTMEs by incorpo-
rating the particle-particle part of the effective nucleon-
nucleon interaction in the proton-neutron channel [22] and
the observed T 2ν

1/2 of several 2ν β−β− decay emitters were

reproduced successfully [7]. Subsequently, the 2ν e+DBD
modes were studied in shell model, QRPA and its exten-
sions, SU(4)στ and SSDH and pseudo SU(3) [7].

Low-background set-ups using Ge detectors were pro-
posed by Barabash [23] to detect the transition of 2ν
ECEC mode to the 0+1 excited state. New developments
in experimental set-ups have led to good limits on the
measurement of the 2ν e+DBD modes of nuclei of our in-
terest namely 106Cd [12,20,24–30] and 108Cd [24,28,29]
through the direct counting experiments. In the mass re-
gion A ∼ 100, Norman has studied the 2ν e+DBD modes
of 96Ru [21] and 102Pd is also a potential candidate to
be studied with a Q-value of about 1.175MeV with natu-
ral abundance of about 1.02%. With improved sensitivity
in detection systems of the planned bigger Osaka-OTO
experiment [31] and COBRA [32], it is expected that 2ν
e+DBD modes will be in observable range in the near fu-
ture. Hence, a timely reliable prediction of the half-lives
of 96Ru, 102Pd, 106Cd and 108Cd nuclei will be helpful in
the ongoing planning of future experimental set-ups.

The structure of nuclei in the mass region A ≈ 100
is quite complex. This mass region offers a nice exam-
ple of shape transitions, i.e. sudden onset of deformation
at neutron number N = 60. The nuclei are soft vibra-
tors for N < 60 and quasi-rotors for N > 60. The nuclei
with neutron number N = 60 are transitional nuclei. In
this mass region, A = 96–108, the smallest and largest
quadrupole deformation parameter β2 are 0.1580±0.0032
and 0.2443±0.0030 for 96Ru and 102Ru, respectively. Fur-
ther, the pairing of like nucleons plays an important role
in all ββ decay emitters, which are even-Z and even-N
nuclei. Thus, it is expected that pairing and deformation
degrees of freedom will play some crucial role in the struc-
ture of 96,102Ru, 96Mo, 102,106,108Pd and 106,108Cd nuclei.
For the study of 2ν e+DBD modes of these nuclei, it is de-
sirable to have a framework in which the pairing and defor-
mation degrees of freedom are treated on equal footing in
its formalism. The effects of deformation on the distribu-
tion of the Gamow-Teller (GT) and beta decay properties
have been studied using a quasi-particle Tamm-Dancoff
approximation (TDA) based on deformed Hartree-Fock
(HF) calculations with Skyrme interactions [33], a de-

formed selfconsistent HF+RPA method with Skyrme-type
interactions [34]. The comparison of the experimental
GT strength distribution B(GT ) from its decay with the
results of QRPA calculations was employed as a novel
method of deducing the deformation of the N = Z nu-
cleus 76Sr [35]. The effect of deformation on the 2ν ββ
decay for ground-state transition 76Ge → 76Se was stud-
ied in the framework of the deformed QRPA with sep-
arable GT residual interaction [36]. A deformed QRPA
formalism to describe simultaneously the energy distri-
butions of the single-beta GT strength and the 2ν ββ
decay matrix elements, using deformed Woods-Saxon po-
tentials and deformed Skyrme Hartree-Fock mean fields
was developed [37]. In all these works calculations are per-
formed in the intrinsic basis, where angular momentum is
not a good quantum number. The projected Hartree-Fock-
Bogoliubov (PHFB) model offers, in this sense, a sensible
alternative. However, in the present version of the PHFB
model, it is not possible to study the structure of odd-odd
nuclei. Hence, the single-beta decay rates and the distribu-
tion of Gamow-Teller strength cannot be calculated. On
the other hand, the study of these processes has impli-
cations in the understanding of the role of the isoscalar
part of the proton-neutron interaction. This is a serious
draw back in the present formalism of the PHFB model.
Notwithstanding, the PHFB model has been successfully
applied to the β−β− decay of many emitters in this mass
region, where it was possible to describe, in the same con-
text, the lowest excited states of the parent and daughter
nuclei, as well as their electromagnetic transition strengths
on one hand, and to reproduce their measured ββ decay
rates on the other [38].

The aim of nuclear many-body theory is to describe the
observed properties of nuclei in a coherent framework. The
ββ decay can be studied in the same framework as many
other nuclear properties and decays. Experimental stud-
ies involving in-beam γ-ray spectroscopy concerning the
level energies as well as electromagnetic properties have
yielded a vast amount of data over the past years. Al-
though the availability of data permits a rigorous and de-
tailed critique of the ingredients of the microscopic model
that seeks to provide a description of nuclear ββ decay,
most of the calculations of 2ν e+DBD transition matrix
elements performed so far but for the work of Barabash et
al. [26] and Suhonen et al. [39] do not satisfy this criterion.
The successful study of 2ν e+DBD modes of 106Cd for
the 0+ → 0+ transition together with other observed nu-
clear properties, like the yrast spectra, reduced transition
probabilities B(E2:0+ → 2+), static quadrupole moments
Q(2+) and g-factors g(2+) of both parent and daughter
nuclei using the PHFBmodel in conjunction with the sum-
mation method [40], has motivated us to apply the same
framework to study the 2ν e+DBD modes of 96Ru, 102Pd
and 108Cd isotopes. The reason for presenting again the
results of 106Cd is that the HFB wave functions are gen-
erated with improved accuracy and it is nice to see that
the results remain almost unchanged.

Further, it has been shown that there exists an inverse
correlation between the GT strength and the quadrupole
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moment [41,42]. The PPQQ interaction [43] has two
terms, associated with the pairing interaction (PP ) and
the quadrupole-quadrupole (QQ) interactions. The former
accounts for the sphericity of nucleus, whereas the latter
increases the collectivity in the nuclear intrinsic wave func-
tions and makes the nucleus deformed. Hence, the PHFB
model in conjunction with the PPQQ interaction is a con-
venient choice to examine the explicit role of deformation
on the NTME M2ν . In case of 106Cd, we have already
shown that deformation plays an important role in the
variation of M2ν vis-à-vis changing strength of the QQ
part of effective two-body interaction [40].

The structure of the present paper is as follows. The
theoretical formalism to calculate the half-lives of 2ν
e+DBD modes has been given in a number of reviews [4,
7] and in our earlier study of 2ν e+DBD modes of 106Cd
for the 0+ → 0+ transition [40]. Hence, we briefly outline
steps of the above derivations in sect. 2 for clarity of nota-
tion. Details of the mathematical expressions used to cal-
culate the spectroscopic properties of nuclei in the PHFB
model have been given by Dixit et al. [44]. In sect. 3, we
present results to check the reliability of the wave func-
tions of 96,102Ru, 96Mo, 102,106,108Pd and 106,108Cd nu-
clei by calculating the mentioned spectroscopic properties
and by comparing them with the available experimental
data. The half-lives T 2ν

1/2 for the 2ν e+DBD modes of 96Ru,
102Pd, 106Cd and 108Cd nuclei for the 0+ → 0+ transition
are calculated. The role of deformation on M2ν is also
studied. We present some concluding remarks in sect. 4.

2 Theoretical framework

The inverse half-life of the 2ν e+DBD mode for the 0+ →
0+ transition is given by

[

T 2ν
1/2(0

+ → 0+)
]−1

= G2ν |M2ν |
2
, (1)

where G2ν is the integrated kinematical factor and the
NTME M2ν is expressed as

M2ν =
∑

N

〈0+F ||στ
−||1+N 〉〈1

+
N ||στ

−||0+I 〉

E0 + EN − EI
, (2)

where

E0 =
1

2
(EI − EF ) =

1

2
W0. (3)

The total energy released, W0, for different 2ν e+DBD
modes is given by

W0(β
+β+) = Qβ+β+ + 2me, (4)

W0(β
+EC) = Qβ+EC + eb, (5)

W0(ECEC) = QECEC − 2me + eb1 + eb2. (6)

The summation over intermediate states is carried out
using the summation method [45] and the NTMEM2ν can
be written as

M2ν =
1

E0

〈

0+F

∣

∣

∣

∣

∣

∑

m

(−1)mΓ−mFm

∣

∣

∣

∣

∣

0+I

〉

, (7)

where the Gamow-Teller (GT ) operator Γm has been de-
fined as

Γm =
∑

s

σmsτ
−
s , (8)

and

Fm =

∞
∑

λ=0

(−1)λ

Eλ
0

DλΓm, (9)

with

DλΓm = [H, [H, ........, [H,Γm] .......]](λ times). (10)

When the GT operator commutes with the effective two-
body interaction, eq. (7) can be further simplified to

M2ν =
∑

π,ν

〈0+F ||σ · στ
−τ−||0+I 〉

E0 + ε(nν , lν , jν)− ε(nπ, lπ, jπ)
. (11)

The energy denominator is evaluated as follows. The dif-
ference in single-particle energies of neutrons in the in-
termediate nucleus and protons in the parent nucleus is
mainly due to the difference in Coulomb energies. Hence

ε(nν , lν , jν)− ε(nπ, lπ, jπ) =
{

∆C−2E0 for nν=nπ, lν= lπ, jν=jπ
∆C−2E0+∆Es.o.splitting for nν=nπ, lν= lπ, jν 6=jπ

,

(12)

where the Coulomb energy difference ∆C is given by Bohr
and Mottelson [46]

∆C=
0.70

A1/3

[

(2Z + 1)−0.76
{

(Z + 1)4/3−Z4/3
}]

. (13)

In the case of the pseudo SU(3) model [47–49], the energy
denominator is a well-defined quantity without any free
parameter as the GT operator commutes with the two-
body interaction. The energy denominator was evaluated
exactly for 2ν β−β− [47,48] and 2ν e+DBD modes [49] in
the pseudo SU(3) scheme. It must be underlined that, in
the present context, the use of the summation method goes
beyond the closure approximation, because each proton-
neutron excitation is weighted depending on its spin-flip
or non–spin-flip character. The explicit inclusion of the
spin-orbit splitting in the energy denominator, eq. (12),
implies that it cannot be factorized out of the sum in
eq. (11). In this sense, employing the summation method
in conjunction with the PHFB formalism is richer than
what was done in the previous application with the pseudo
SU(3) model [47,48].

In the present work, we use a Hamiltonian with PPQQ
type [43] of effective two-body interaction. Explicitly, the
Hamiltonian is written as

H = Hsp + V (P ) + χqqV (QQ), (14)

where Hsp denotes the single-particle Hamiltonian. The
pairing part of the effective two-body interaction V (P ) is
written as

V (P ) = −

(

G

4

)

∑

αβ

(−1)jα+jβ−mα−mβa†αa
†
ᾱaβ̄aβ , (15)
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where α denotes the quantum numbers (nljm). The state
ᾱ is same as α but with the sign of m reversed. The QQ
part of the effective interaction V (QQ) is expressed as

V (QQ) =

−
(χ

2

)

∑

αβγδ

∑

µ

(−1)µ〈α|q2µ|γ〉〈β|q
2
−µ|δ〉 a

†
αa

†
β aδ aγ , (16)

where

q2µ =

(

16π

5

)1/2

r2Y 2
µ (θ, φ). (17)

The χqq is an arbitrary adimensional parameter and the
final results are obtained by setting the χqq = 1. The pur-
pose of introducing χqq is to study the role of deformation
by varying the strength of QQ part of the effective two-
body interaction.

The model Hamiltonian given by eq. (14) is not isospin
symmetric. Hence, the energy denominator is not as sim-
ple as in eq. (11). However, the violation of isospin symme-
try for theQQ part of our model Hamiltonian is negligible,
as will be evident from the parameters of the two-body
interaction given later. Further, the violation of isospin
symmetry for the pairing part of the two-body interaction
is presumably small in the mass region under study. Under
these assumptions, the expression to calculate the NTME
M2ν of 2ν e+DBD modes for the 0+ → 0+ transition in
the PHFB model is obtained as follows.

In the PHFB model, states with good angular momen-
tum J are obtained from the axially symmetric HFB in-
trinsic state |Φ0〉 with K = 0 using the standard projec-
tion technique [50] given by

|ΨJ
00〉 =

[

(2J + 1)

8π2

]
∫

DJ
00(Ω)R(Ω)|Φ0〉dΩ, (18)

where R(Ω) and DJ
00(Ω) are the rotation operator and the

rotation matrix, respectively. The axially symmetric HFB
intrinsic state |Φ0〉 can be written as

|Φ0〉 =
∏

im

(uim + vimb
†
imb

†
im̄)|0〉, (19)

where the creation operators b†im and b†im̄ are defined as

b†im =
∑

α

Ciα,ma
†
αm

and b†im̄ =
∑

α

(−1)l+j−mCiα,ma
†
α,−m. (20)

The results of HFB calculations are summarized by the
amplitudes (uim, vim) and expansion coefficients Cij,m.

Finally, one obtains the following expression for the
NTME M2ν of the 2ν e+DBD mode:

M2ν =
∑

π,ν

〈Ψ
Jf=0
00 ||σ · στ−τ−||ΨJi=0

00 〉

E0 + ε(nν , lν , jν)− ε(nπ, lπ, jπ)

=
[

n
Jf=0
Z−2,N+2n

Ji=0
Z,N

]−1/2
π
∫

0

n(Z,N),(Z−2,N+2)(θ)

×
∑

αβγδ

〈αβ |σ1 · σ2τ
−τ−| γδ〉

E0 + εα(nν , lν , jν)− εγ(nπ, lπ, jπ)

×
∑

εη

(

f
(ν)∗
Z−2,N+2

)

εβ
[

1 + F
(ν)
Z,N (θ)f

(ν)∗
Z−2,N+2

]

εα

×

(

F
(π)∗
Z,N

)

ηδ
[

1 + F
(π)
Z,N (θ)f

(π)∗
Z−2,N+2

]

γη

sin θdθ, (21)

where

nJ =

π
∫

0

{

det
[

1 + F (π)(θ)f (π)†
]}1/2

×
{

det
[

1 + F (ν)(θ)f (ν)†
]}1/2

dJ00(θ) sin(θ)dθ, (22)

and

n(Z,N),(Z−2,N+2)(θ) = {det[1 + F
(π)
Z,N (θ)f

(π)†
Z−2,N+2]}

1/2

×{det[1 + F
(ν)
Z,N (θ)f

(ν)†
Z−2,N+2]}

1/2. (23)

Here π(ν) represents the proton (neutron) of nuclei in-
volved in the 2ν e+DBD. The matrices fZ,N and FZ,N (θ)
are given by

[fZ,N ]αβ =
∑

i

Cijα,mα
Cijβ ,mβ

(vimα
/uimα

) δmα,−mβ
,

(24)
and

[FZ,N (θ)]αβ =
∑

m′

αm
′

β

djα
mα,m

′

α

(θ)d
jβ

mβ ,m
′

β

(θ)fjαm′

α,jβm
′

β
.

(25)
The calculation of the NTME M2ν for the 2ν e+DBD

mode is carried on as follows. In the first step, the matri-
ces [fZ,N ]αβ and [FZ,N (θ)]αβ are set up using expressions
given by eqs. (24) and (25), respectively. Finally, the re-
quired NTMEM2ν is calculated in a straightforward man-
ner using eq. (21) with 20 Gaussian quadrature points in
the range (0, π).

3 Results and discussions

The model space, single-particle energies (SPEs) and the
effective two-body interaction are the same employed in
our earlier calculation on 2ν e+DBD modes of 106Cd for



P.K. Raina et al.: The 0+ → 0+ positron double-β decay with emission . . . 31

the 0+ → 0+ transition [40]. However, we present a brief
discussion of them in the following for convenience. The
model space consists of 1p1/2, 2s1/2, 1d3/2, 1d5/2, 0g7/2,
0g9/2 and 0h11/2 orbits for protons and neutrons, where we

have treated the doubly even nucleus 76Sr (N = Z = 38)
as an inert core. The orbit 1p1/2 has been included in the
valence space to examine the role of the Z = 40 proton
core vis-à-vis the onset of deformation in highly neutron-
rich isotopes. The set of single-particle energies (SPEs)
used here are (in MeV) ε(1p1/2) = −0.8, ε(0g9/2) = 0.0,
ε(1d5/2) = 5.4, ε(2s1/2) = 6.4, ε(1d3/2) = 7.9, ε(0g7/2) =
8.4 and ε(0h11/2) = 8.6 for proton and neutrons. This set
of SPEs but for ε(0h11/2), which is slightly lowered, has
been employed in a number of successful shell model [51]
as well as variational model [52] calculations for nuclear
properties in the mass region A ≈ 100.

The strengths of the pairing interaction has been
fixed through the relations Gp = 30/AMeV and Gn =
20/AMeV, which are the same as those used by Heestand
et al. [53] to explain the experimental g(2+) data of some
even-even Ge, Se, Mo, Ru, Pd, Cd and Te isotopes in
Greiner’s collective model [54]. The strengths of the like
particle components of the QQ interaction are taken as
χpp = χnn = 0.0105MeV b−4, where b is the oscillator pa-
rameter. The strength of the proton-neutron (pn) compo-
nent of the QQ interaction χpn is varied to fit the spectra
of 96,102Ru, 96Mo, 102,106,108Pd and 106,108Cd in agree-
ment with the experimental results. To be more specific,
we have taken the theoretical spectra to be the optimum
ones if the excitation energy of the 2+ state E2+ is re-
produced as closely as possible to the experimental value.
Thus for a given model space, SPEs, Gp, Gn and χpp, we
have fixed χpn through the experimentally available en-
ergy spectra. We have given the values of χpn in table 1.
These values for the strength of the QQ interaction are
comparable to those suggested by Arima on the basis of
an empirical analysis of the effective two-body interac-
tions [55]. All the parameters are kept fixed throughout
the calculation.

3.1 The yrast spectra and electromagnetic properties

In table 1 we have displayed the theoretically calculated
and experimentally observed values of yrast spectra for
Jπ = 2+, 4+ and 6+ states of 96,102Ru, 96Mo, 102,106,108Pd
and 106,108Cd isotopes. The agreement between the exper-
imentally observed [56] and theoretically reproduced E2+

is quite good. However, it can be noticed that the theo-
retical spectra are more expanded in comparison with the
experimental spectra. This can be corrected to some ex-
tent in the PHFB model in conjunction with the VAP pre-
scription [52]. However, our aim is to reproduce properties
of the low-lying 2+ state. Hence, we have not attempted
to invoke the VAP prescription, which will unnecessarily
complicate the calculations.

In table 2 we present the calculated as well as the ex-
perimentally observed values of the reduced B(E2:0+ →
2+) transition probabilities [57], static quadrupole mo-
ments Q(2+) and the gyromagnetic factors g(2+) [58]. In

Table 1. Excitation energies (in MeV) of Jπ = 2+, 4+ and
6+ yrast states of 96,102Ru, 96Mo, 102,106,108Pd and 106,108Cd
nuclei.

Nucleus χpn Theo. Expt. [56]
96
44Ru 0.02417 E2+ 0.8323 0.8326

E4+ 2.1389 1.51797

E6+ 3.8037 2.1496
102
46 Pd 0.01573 E2+ 0.5551 0.5565

E4+ 1.6010 1.2760

E6+ 2.9467 2.1115
106
48 Cd 0.01505 E2+ 0.6321 0.6327

E4+ 1.7298 1.4939

E6+ 3.1610 2.4918
108
48 Cd 0.01481 E2+ 0.6319 0.6330

E4+ 1.8072 1.5084

E6+ 3.3138 2.5413
96
42Mo 0.02557 E2+ 0.7779 0.7782

E4+ 2.0373 1.6282

E6+ 3.5775 2.4406
102
44 Ru 0.02054 E2+ 0.4751 0.4751

E4+ 1.4773 1.1064

E6+ 2.8737 1.8732
106
46 Pd 0.01441 E2+ 0.5115 0.5119

E4+ 1.4816 1.2292

E6+ 2.7264 2.0766
108
46 Pd 0.01443 E2+ 0.4336 0.4339

E4+ 1.3126 1.0482

E6+ 2.4826 1.7712

case of B(E2:0+ → 2+), only some representative exper-
imental values are tabulated. B(E2:0+ → 2+) results are
given for effective charges eeff = 0.40, 0.50 and 0.60 in
columns 2 to 4, respectively. The experimentally observed
values are displayed in column 5. The calculated values are
in excellent agreement with the observed B(E2:0+ → 2+)
of all the nuclei considered at eeff = 0.50 except for 102Ru,
102Pd and 108Pd, which differ by 0.049, 0.02 and 0.046 e2

b2, respectively, from the experimental lower limits.
The theoretically calculated Q(2+) values are tabu-

lated in columns 6 to 8 of the same table 2, along with
the experimentally observed Q(2+) data in column 9,
for the same effective charges as those used in case of
B(E2:0+ → 2+). Again, the agreement between the calcu-
lated and experimental Q(2+) values is quite good in case
of 102Ru, 108Cd, 106Pd and 108Pd nuclei except for 106Cd,
where the difference is 0.2 e b. In case of 96Ru,96Mo and
102Pd, although the experimental values have large error
bars and a meaningful comparison is difficult, the agree-
ment between calculated and observed values is not sat-
isfactory. The g(2+) values are calculated with gπl = 1.0,
gνl = 0.0, gπs = gνs = 0.60. No experimental result for
g(2+) is available for the isotope 96Ru. The calculated
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Table 2. Comparison of the calculated and experimentally observed reduced transition probability B(E2:0+ → 2+) in e2 b2,
static quadrupole moments Q(2+) in e b and g-factors g(2+) in nuclear magneton. Here B(E2) and Q(2+) are calculated for
the effective charges ep = 1 + eeff and en = eeff . The g(2

+) has been calculated for gπl = 1.0, gνl = 0.0 and gπs = gνs = 0.60.

Nuclei B(E2:0+ → 2+) Q(2+) g(2+)

Theo. Expt. [57] Theo. Expt. [58] Theo. Expt. [58]

eeff eeff

0.40 0.50 0.60 0.40 0.50 0.60
96Ru 0.208 0.261 0.319 0.251± 0.010 −0.412 −0.461 −0.510 −0.15± 0.27 0.394

0.260± 0.010
96Mo 0.265 0.335 0.413 0.310± 0.047 −0.466 −0.524 −0.582 −0.20± 0.08 0.563 0.419± 0.033± 0.038∗

0.271± 0.005 +0.04± 0.08
102Pd 0.323 0.410 0.507 0.460± 0.030 −0.514 −0.580 −0.645 −0.20± 0.20 0.386 0.41± 0.04

0.39± 0.05
102Ru 0.458 0.585 0.726 0.640± 0.006 −0.613 −0.692 −0.771 −0.57± 0.07 0.385 0.371± 0.031

0.651± 0.016 −0.68± 0.08
106Cd 0.330 0.422 0.525 0.410± 0.020 −0.518 −0.586 −0.654 −0.28± 0.08 0.372 0.40± 0.10

0.386± 0.05
106Pd 0.403 0.515 0.640 0.610± 0.090 −0.573 −0.648 −0.722 −0.56± 0.08 0.465 0.398± 0.021

0.656± 0.035 −0.51± 0.08 0.30± 0.06
108Cd 0.414 0.531 0.661 0.540± 0.011 −0.581 −0.657 −0.734 −0.45± 0.08 0.361 0.34± 0.09

0.430± 0.020
108Pd 0.456 0.584 0.727 0.700± 0.070 −0.610 −0.690 −0.770 −0.58± 0.04 0.483 0.36± 0.03

0.760± 0.040 −0.51± 0.06 0.32± 0.03
∗

P.F. Mantica et al., Phys. Rev. C 63, 034312 (2001).

and experimentally observed g(2+) values are in excel-
lent agreement for 102Ru, 102Pd, 106Cd and 108Cd nuclei
whereas they are off by 0.073, 0.046 and 0.093 nm only for
96Mo, 106Pd and 108Pd isotopes, respectively.

From the above discussions, it is clear that the overall
agreement between the calculated and observed electro-
magnetic properties is quite good. Hence, the PHFB wave
functions of 96,102Ru, 96Mo, 102,106,108Pd and 106,108Cd
nuclei generated by fixing χpn to reproduce the yrast
spectra are quite reliable. Below, we present the results
of NTMEs M2ν as well as the half-lives T 2ν

1/2 of 96Ru,
102Pd,106Cd and 108Cd for the 0+ → 0+ transition using
the same HFB wave functions.

3.2 Results of 2ν β+β+/β+EC/ECEC decay

In table 3, we have compiled the available experimen-
tal and theoretical results for 2ν e+DBD modes of 96Ru,
102Pd,106Cd and 108Cd nuclei along with our calculated
NTMEs M2ν and the corresponding half-lives T 2ν

1/2. The

calculated phase space factors were obtained following the
prescription of Doi et al. [4] in the approximation C1 =
1.0, C2 = 0.0, C3 = 0.0 and R1,1(ε) = R+1(ε) +R−1(ε) =
1.0. The phase space integrals have been evaluated for
gA = 1.261 by Doi et al. [4]. However, in heavy nuclei
it is more justified to use the nuclear matter value of gA

around 1.0. Hence, the theoretical T 2ν
1/2 are presented both

for gA = 1.0 and 1.261.

In the case of 96Ru, the half-life limits T 2ν
1/2 of the 2ν

β+EC and 2ν ECEC modes for the 0+ → 0+ transition
have been investigated by Norman [21] and are of the or-
der of 1016 y. The calculated NTMEs M2ν in the PHFB
and SU(4)στ [59] models differ by a factor of 2 for all
the three modes, while in QRPA model [60], the values of
NTMEs M2ν are larger than the PHFB model values by
a factor of 5, approximately. The phase space factors for
the 96Ru isotope are G2ν(β

+β+) = 2.516 × 10−26 y−1,
G2ν(β

+EC) = 9.635 × 10−22 y−1 and G2ν(ECEC) =
5.385 × 10−21 y−1. The theoretically calculated T 2ν

1/2 are

of the order of 1026–28 y, 1022–23 y and 1021–23 y for 2ν
β+β+, 2ν β+EC and 2ν ECEC modes, respectively, for
gA = 1.261–1.00.

The e+DBD modes of the 102Pd isotope for the
0+ → 0+ transition have been investigated neither ex-
perimentally nor theoretically so far. We have used the
phase space factors G2ν(β

+EC) = 1.449× 10−30 y−1 and
G2ν(ECEC) = 9.611 × 10−23 y−1 for the 2ν β+EC and
2ν ECEC modes, respectively. In the PHFB model, the
predicted T 2ν

1/2 of the 2ν β+EC and 2ν ECEC modes are

(2.509–6.344)× 1032 y and (3.783–9.565)× 1024 y, respec-
tively, for gA = 1.261–1.00.

We have compiled the available experimental [12,20,
24–30] and theoretical results [26,39,59–65] for 106Cd
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Table 3. Experimental limits on half-lives T 2ν
1/2(0

+ → 0+), theoretically calculatedM2ν and corresponding T 2ν
1/2(0

+ → 0+) for 2ν

β+β+, 2ν β+EC and 2ν ECEC decay of 96Ru, 102Pd, 106Cd and 108Cd nuclei. Half-lives are calculated using gA = (1.261–1.0),
respectively. ∗ and ∗∗ denote the half-life limit for 0ν + 2ν and 0ν + 2ν + 0νM modes, respectively.

Nuclei Decay Experiment Theory

mode Ref. T 2ν
1/2 (y) Ref. Model |M2ν | T 2ν

1/2 (y)
96Ru β+β+ [21] > 3.1× 1016∗ Present PHFB 0.0537 (1.378–3.485)× 1028

[60] QRPA 0.2510 (6.309–15.950)× 1026

β+EC [21] > 6.7× 1016∗ Present PHFB 0.0537 (3.599–9.100)× 1023

[59] SU(4)στ 0.1005 (1.028–2.598)× 1023

[60] QRPA 0.2694 (1.430–3.616)× 1022

ECEC – Present PHFB 0.0537 (0.644–1.628)× 1023

[59] SU(4)στ 0.1005 (1.839–4.649)× 1022

[60] QRPA 0.2620 (2.705–6.840)× 1021

102Pd β+EC Present PHFB 0.0524 (2.509–6.344)× 1032

ECEC Present PHFB 0.0524 (3.783–9.565)× 1024

106Cd β+β+ [29] > 5.0× 1018 Present PHFB 0.0819 (3.495–8.836)× 1027

[27] > 2.4× 1020∗∗ [65] SQRPA(l.b.) 0.61 (6.304–15.940)× 1025

[26] > 1.0× 1019∗ SQRPA(s.b.) 0.57 (7.220–18.260)× 1025

[25] > 9.2× 1017 [39] QRPA(AWS) 0.722 (4.500–11.380)× 1025

[20] > 2.6× 1017∗ QRPA(WS) 0.166 (8.513–21.520)× 1026

[12] > 6× 1016 [26] QRPA(WS) 0.840 (3.324–8.406)× 1025

QRPA(AWS) 0.780 (3.856–9.749)× 1025

[60] QRPA 0.218 (4.936–12.480)× 1026

[61] QRPA 4.940× 1025

β+EC [29] > 1.2× 1018 Present PHFB 0.0819 (9.489–23.992)× 1022

[27] > 4.1× 1020 [65] SQRPA(l.b.) 0.61 (1.712–4.328)× 1021

[26] > 0.66× 1019∗ SQRPA(s.b.) 0.57 (1.960–4.957)× 1021

[25] > 2.6× 1017 [39] QRPA(AWS) 0.718 (1.236–3.124)× 1021

[20] > 5.7× 1017∗ QRPA(WS) 0.168 (2.257–5.706)× 1022

[59] SU(4)στ 0.1947 (1.680–4.248)× 1022

[63] RQRPA(AWS) 0.56 (2.031–5.136)× 1021

RQRPA(WS) 0.55 (2.106–5.324)× 1021

[26] QRPA(WS) 0.84 (9.027–22.820)× 1020

QRPA(AWS) 0.78 (1.047–2.647)× 1021

[60] QRPA 0.352 (5.141–13.000)× 1021

[62] QRPA(WS) 0.493 (2.621–6.626)× 1021

0.660 (1.462–3.697)× 1021

106Cd ECEC [30] > 1.0× 1018 Present PHFB 0.0819 (1.293–3.270)× 1022

[29] > 5.8× 1017 [65] SQRPA(l.b.) 0.61 (2.333–5.899)× 1020

[28] > 1.0× 1018 SQRPA(s.b.) 0.57 (2.672–6.756)× 1020

[24] > 5.8× 1017 [39] QRPA(AWS) 0.718 (1.684–4.258)× 1020

QRPA(WS) 0.168 (3.076–7.780)× 1021

[64] SSDH(Theo) 0.28 (1.107–2.800)× 1021

SSDH(Exp) 0.17 (3.004–7.595)× 1021

[59] SU(4)στ 0.1947 (2.290–5.790)× 1021

[63] RQRPA(AWS) 0.56 (2.768–6.999)× 1020

RQRPA(WS) 0.55 (2.870–7.256)× 1020

[26] QRPA(WS) 0.84 (1.230–3.111)× 1020

QRPA(AWS) 0.78 (1.427–3.608)× 1020

[60] QRPA 0.270 (1.191–3.011)× 1021

[62] QRPA(WS) 0.493 (3.572–9.031)× 1020

0.660 (1.993–5.039)× 1020

108Cd ECEC [29] > 4.1× 1017 Present PHFB 0.0952 (3.939–9.959)× 1027

[28] > 1.0× 1018

[24] > 4.1× 1017
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Table 4. Effect of the variation in χqq on 〈Q2
0〉, β2 and NTMEs M2ν .

χqq 0.00 0.20 0.40 0.60 0.80 0.90 0.95 1.00 1.05 1.10 1.20 1.30 1.40 1.50
96Ru 〈Q2

0〉 0.0 0.006 0.214 0.144 23.854 30.351 32.485 34.473 36.42 38.15 66.54 70.05 73.61 77.48

β2 0.0 0.046 0.097 0.098 0.112 0.140 0.151 0.161 0.171 0.180 0.295 0.317 0.337 0.348
96Mo 〈Q2

0〉 0.0 0.695 0.211 0.477 22.464 31.82 37.02 41.73 45.15 48.15 61.43 65.44 66.70 67.64

β2 0.0 0.091 0.093 0.093 0.106 0.149 0.174 0.191 0.210 0.224 0.268 0.281 0.286 0.290

M2ν 0.168 0.154 0.152 0.153 0.093 0.072 0.067 0.054 0.036 0.024 0.076 0.049 0.056 0.049

102Pd 〈Q2
0〉 0.0 0.252 0.081 1.080 1.839 36.08 42.32 45.47 47.91 49.63 52.67 56.37 84.71 85.71

β2 0.0 0.085 0.046 0.090 0.092 0.149 0.172 0.185 0.196 0.203 0.217 0.234 0.349 0.353
102Ru 〈Q2

0〉 0.0 0.028 0.123 0.492 38.04 49.81 53.57 56.51 58.87 61.19 66.93 88.17 88.73 89.25

β2 0.0 0.036 0.068 0.092 0.159 0.204 0.220 0.232 0.242 0.252 0.279 0.362 0.365 0.367

M2ν 0.178 0.203 0.208 0.215 0.135 0.092 0.072 0.052 0.039 0.027 0.021 0.0001 0.015 0.014

106Cd 〈Q2
0〉 0.0 0.008 0.031 0.128 0.510 32.65 40.83 47.14 55.89 62.54 73.53 83.65 90.63 91.33

β2 0.0 0.007 0.003 0.035 0.073 0.127 0.152 0.176 0.211 0.243 0.299 0.325 0.344 0.347
106Pd 〈Q2

0〉 0.0 0.022 0.079 0.192 0.897 39.54 46.88 52.12 56.13 59.31 66.23 73.87 79.84 92.21

β2 0.0 0.016 0.042 0.064 0.094 0.158 0.183 0.203 0.216 0.227 0.254 0.290 0.322 0.364

M2ν 0.169 0.164 0.162 0.166 0.170 0.127 0.095 0.082 0.084 0.066 0.041 0.027 0.004 0.001

108Cd 〈Q2
0〉 0.0 0.015 0.047 0.132 0.488 35.73 43.87 53.29 67.98 76.17 79.26 80.61 84.18 94.34

β2 0.0 0.001 0.013 0.039 0.076 0.134 0.161 0.195 0.258 0.299 0.311 0.316 0.326 0.352
108Pd 〈Q2

0〉 0.0 0.047 0.100 0.267 28.21 44.76 50.99 55.88 59.63 62.85 70.17 76.61 83.14 86.42

β2 0.0 0.046 0.051 0.076 0.125 0.174 0.196 0.213 0.225 0.236 0.267 0.299 0.334 0.347

M2ν 0.208 0.199 0.203 0.204 0.183 0.120 0.093 0.095 0.084 0.052 0.029 0.020 0.011 0.001

along with our calculated M2ν and corresponding half-life
T 2ν
1/2 in table 3. In the case of 106Cd, the phase factors are

G2ν(β
+β+) = 4.263 × 10−26 y−1, G2ν(β

+EC) = 1.570 ×
10−21 y−1and G2ν(ECEC) = 1.152 × 10−20 y−1, respec-
tively. In comparison with the theoretically predicted T 2ν

1/2,

the present experimental limits for the 0+ → 0+ tran-
sition of 106Cd are smaller by a factor of 105–7 in the
case of the 2ν β+β+ mode but they are quite close for 2ν
β+EC and 2ν ECEC modes. The half-life T 2ν

1/2 calculated

in the PHFB model using the summation method differs
from all the existing calculations. The presently calculated
NTME M2ν is smaller than the recently given results in
the QRPA(WS) model of Suhonen and Civitarese [39] by a
factor of 2 approximately for all the three modes. The the-
oretical M2ν values of the PHFB model and SU(4)στ [59]
again differ by a factor of 2 approximately for the 2ν
β+EC and 2ν ECEC modes. On the other hand, theM2ν

calculated in our PHFB model is smaller than the values
of Hirsch et al. [60] by a factor of 3 approximately in the
case of the 2ν β+β+ and 2ν ECEC modes while for the
2ν β+EC mode the results differ by a factor of 4 approx-
imately. All the rest of the calculations predict NTMEs
which are larger than our predictedM2ν approximately by
a factor of 7 [62,63] to 10 [26]. The predicted T 2ν

1/2 of the

2ν β+β+, 2ν β+EC and 2ν ECEC modes in the PHFB

model are (3.495–8.836)× 1027 y, (9.489–23.992)× 1022 y
and (1.293–3.270) × 1022 y, respectively, for gA = 1.261
and 1.0.

The 2ν ECEC mode of 108Cd for the 0+ → 0+ tran-
sition has been investigated by Georgadze et al. [24], Kiel
et al. [28] and Danevich et al. [29]. No theoretical calcu-
lation has been done so far to study the above-mentioned
mode of the 108Cd isotope. The phase space factor of the
2ν ECEC mode is G2ν(ECEC) = 2.803 × 10−26 y−1. In
the PHFB model, the calculated half-life T 2ν

1/2 of the 2ν

ECEC decay mode is 3.939 × 1027 y and 9.959 × 1027 y
for gA = 1.261 and 1.0, respectively.

The quenching of the nuclear matrix elements seems
to be closely related with the explicit inclusion of defor-
mation effects, which are absent in the other models. We
analyze in detail this point below.

3.3 Deformation effect

We have investigated the variation of 〈Q2
0〉, β2 and M2ν

with respect to the change in strength of the QQ inter-
action χqq to understand the role of deformation on the
NTME M2ν . Out of several possibilities, we have taken
the quadrupole moment of the intrinsic state 〈Q2

0〉 (in ar-
bitrary units) and the quadrupole deformation parameter
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β2 as a quantitative measure of the deformation. The
quadrupole moment of the intrinsic states 〈Q2

0〉, the de-
formation parameter β2 and the NTMEsM2ν for different
χqq are tabulated in table 4. The deformation parameter
has been calculated with the same effective charge as used
in the calculation of B(E2:0+ → 2+) transition probabil-
ities.

It is noticed that 〈Q2
0〉 as well as β2 increases in general

as χqq is varied from 0 to 1.5 except for a few anomalies.
The intrinsic quadrupole moments show fluctuations in
the case of 96Ru at χqq = 0.6. In the case of 96Mo, simi-
lar fluctuations are observed at χqq equal to 0.4 and 0.6.
In the case of 102,106Pd nuclei, the fluctuations occur at
χqq = 0.4. In all cases, it is found that the quadrupole
deformation parameter β2 follows the same behavior as
the quadrupole moment of the intrinsic state 〈Q2

0〉 with
respect to the change in χqq, except for the

106Cd isotope.
In this case, 〈Q2

0〉 increases but β2 decreases at χqq = 0.4.
Further, there is an anticorrelation between the deforma-
tion parameter and the NTME M2ν , in general, but for a
few exceptions.

To quantify the effect of deformation onM2ν , we define
a quantity D2ν as the ratio of M2ν at zero deformation
(χqq = 0) and full deformation (χqq = 1). The D2ν is
given by

D2ν =
M2ν(χqq = 0)

M2ν(χqq = 1)
. (26)

The values of D2ν are 3.13, 3.40, 2.06 and 2.19 for
96Ru,102Pd, 106Cd and 108Cd nuclei, respectively. These
values of D2ν suggest that M2ν is quenched by a factor of
2 to 3.5 approximately in the mass region 96 ≤ A ≤ 108
due to deformation effects.

Given the schematic nature of the PPQQ interaction
employed in the present calculation, and the fact that
many of the nuclei studied are in the transitional region
and do not display a well-defined rotational spectrum, the
quenching factors discussed above could be considered as a
conservative estimate of the uncertainties in the predicted
2ν nuclear matrix elements. They qualify both the present
results and those obtained with other models where de-
formation is not explicitly considered. The uncertainties
associated with the 0ν processes would be expected to be
far smaller than in the 2ν mode.

In ββ decay studies where deformation was included
but no angular momentum projection was performed, nu-
clear deformation was found to be a mechanism of sup-
pression of the 2ν ββ decay. In this case, the ββ decay
matrix elements are found to have maximum values for
about equal deformations of parent and daughter nuclei,
and they decrease rapidly when differences in deforma-
tions increase [37]. This deformation effect is different from
the one reported in this work. Further research is needed
to relate these two approaches.

4 Conclusions

To summarize, we have tested the quality of PHFB wave
functions by comparing the theoretically calculated re-

sults for yrast spectra, reduced B(E2:0+ → 2+) tran-
sition probabilities, static quadrupole moments Q(2+)
and g-factors g(2+) of 96,102Ru, 96Mo, 102,106,108Pd and
106,108Cd nuclei participating in 2ν e+DBD modes with
the available experimental results. The same PHFB wave
functions are employed to calculate NTMEsM2ν and half-
lives T 2ν

1/2 of 96Ru (2ν β+β+, 2ν β+EC and 2ν ECEC

modes), 102Pd (2ν β+EC and 2ν ECEC modes), 106Cd
(2ν β+β+, 2ν β+EC and 2ν ECEC modes) and 108Cd
(2ν ECEC mode) nuclei. It is noticed that the proton-
neutron part of the PPQQ interaction, which is responsi-
ble for triggering deformation in the intrinsic ground state,
plays an important role in the quenching of M2ν by a fac-
tor of approximately 2 to 3.5 in the considered mass region
96 ≤ A ≤ 108. In the case of 96Ru and 106Cd, we have pre-
sented and discussed the theoretical results of 2ν e+DBD
modes in the PHFB model along with other available nu-
clear models for the 0+ → 0+ transition. In the case of
102Pd and 108Cd, these are the first theoretical calcula-
tions and in view of growing interests in the study of 2ν
e+DBD modes, these predictions would be helpful in the
planning of future experimental set-ups.

This work was financially supported by DAE-BRNS, India vide
sanction No. 2003/37/14/BRNS/669.

References

1. S.P. Rosen, H. Primakoff, in Alpha-beta-gamma ray spec-

troscopy, edited by K. Siegbahn (North-Holland Publishing
Company, Amsterdam, 1965) p. 1499.

2. J.D. Vergados, Nucl. Phys. B 218, 109 (1983).
3. J.D. Vergados, Phys. Rep. 133, 1 (1986).
4. M. Doi, T. Kotani, Prog. Theor. Phys. 87, 1207 (1992).
5. M. Doi, T. Kotani, Prog. Theor. Phys. 89, 139 (1993).
6. A.S. Barabash, Proceedings of the International Workshop

on Double Beta Decay and Related Topics, Trento, Italy,

1995 (World Scientific, Singapore, 1996) p. 502.
7. J. Suhonen, O. Civitarese, Phys. Rep. 300, 123 (1998).
8. I.V. Kirpichnikov, Phys. At. Nucl. 63, 1341 (2000).
9. H.V. Klapdor-Kleingrothaus, Sixty Years of Double Beta

Decay (World Scientific, Singapore, 2001).
10. V.I. Tretyak, Y.G. Zdesenko, At. Data Nucl. Data Tables

61, 43 (1995); 80, 83 (2002).
11. A.S. Barabash, Phys. At. Nucl. 67, 438 (2004).
12. R.G. Winter, Phys. Rev. 99, 88 (1955).
13. C.W. Kim, K. Kubodera, Phys. Rev. D 27, 2765 (1983).
14. J. Abad, A. Morales, R. Nunez-Lagos, A.F. Pacheco, An.

Fis. A 80, 15 (1984); J. Phys. (Paris) 45, C3-147 (1984).
15. Ya.V. Zeldovich, M.Yu. Khlopov, Pis’ma Zh. Eksp. Teor.

Fiz. 34, 148 (1981) [JETP Lett. 34, 141 (1981)].
16. R.A. Eramzhyan, G.V. Micelmacher, M.E. Voloshin,

Pis’ma Zh. Eksp. Teor. Fiz. 35, 530 (1982).
17. J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B

223, 15 (1983).
18. S.K. Balaev, A.A. Kuliev, D.I. Salamov, Izv. Akad. Nauk

USSR, Ser. Fiz. 53, 2136 (1989) (in Russian).
19. E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino,

L. Zanotti, Lett. Nuovo Cimento 33, 273 (1982).
20. E.B. Norman, A. DeFaccio, Phys. Lett. B 148, 31 (1984).



36 The European Physical Journal A

21. E.B. Norman, Phys. Rev. C 31, 1937 (1985).
22. P. Vogel, M.R. Zirnbauer, Phys. Rev. Lett. 57, 3148

(1986).
23. A.S. Barabash, JETP Lett. 51, 207 (1990).
24. A.Sh. Georgadze, F.A. Danevich, Yu.G. Zdesenko, V.V.

Kobychev, B.N. Kropivyanskii, V.N. Kuts, A.S. Nikolaiko,
V.I. Tretyak, Phys. At. Nucl. 58, 1093 (1995).

25. F.A. Danevich et al., Z. Phys. A 355; 433 (1996).
26. A.S. Barabash, V.I. Umatov, R. Gurriaran, F. Hubert, Ph.

Hubert, M. Aunola, J. Suhonen, Nucl. Phys. A 604, 115
(1996).

27. P. Belli, R. Bernabei, A. Incicchitti, C. Arpesella, V.V.
Kobychev, O.A. Ponkratenko, V.I. Tretyak, Yu.G. Zde-
senko, Astropart. Phys. 10, 115 (1999).

28. H. Kiel, D. Münstermann, K. Zuber, Nucl. Phys. A 23,
499 (2003); arXiv: nucl-ex/0301007.

29. F.A. Danevich, A.Sh. Georgadze, V.V. Kobychev, B.N.
Kropivyansky, A.S. Nikolaiko, O.A. Ponkratenko, V.I.
Tretyak, S.Yu. Zdesenko, Yu.G. Zdesenko, Phys. Rev. C
68, 035501 (2003).

30. K. Zuber, Eur. Phys. J. C 33, 817 (2004).
31. Yutaka Ito, Makoto Minowa, Wataru Ootani, Keiji Nishi-

gaki, Yasuhiro Kishimoto, Takayuki Watanabe, Youiti
Ootuka, Nucl. Instrum. Methods Phys. Res. A 386, 439
(1997).

32. K. Zuber, Phys. Lett. B 519, 1 (2001), arXiv: nucl-
ex/0105018.

33. F. Frisk, I. Hamamoto, X.Z. Zhang, Phys. Rev. C 52, 2468
(1995).

34. P. Sarriguren, E. Moya de Guerra, A. Escuderos, A.C. Car-
rizo, Nucl. Phys. A 635, 55 (1998); P. Sarriguren, E. Moya
de Guerra, A. Escuderos, Nucl. Phys. A 658, 13 (1999);
691, 631 (2001).
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